
1

Abstracting Low-Level Network Programming With
ACE, a Pattern-Oriented Network Programming

Framework
Michael LeMay Jack Tan

Computer Sci. Department Computer Sci. Department
UW-Eau Claire UW-Eau Claire
2316 80th St. 105 Garfield Ave. Box 4004

Eau Claire, WI 54703 Eau Claire, WI 54702
lemaymd@uwec.edu tanjs@uwec.edu

Phone: (715)832-9951 Phone: (715)836-2526
Fax: (715)836-2923 Fax: (715)836-2923

Presented By: Michael LeMay

Abstract— Network protocols such as the File Trans-
fer Protocol (FTP) have been vital to the success
of the Internet. Network operating systems have de-
veloped APIs to allow application programmers to
easily implement these protocols. The most popular
API in usage today is the BSD Sockets API. This API
provides low-level operations for performing connec-
tion establishment, message transmission and reception
and provides ways to configure various low-level net-
work parameters. However, this low-level API forces
network programmers to duplicate code in and be-
tween applications, lends itself very poorly to common
Object-Oriented and Pattern-Oriented software design
methodologies and reduces the level of abstraction
present in an application, making the application much
more difficult to comprehend, extend and maintain.
By applying a popular C++ network programming
framework, ACE, it is possible to retain all the low-
level detail and flexibility offered by the Sockets API
while addressing its shortfalls.

Keywords: pattern, ace, ftp, framework, concurrency

I. I NTRODUCTION

ACE [3], the ADAPTIVE (A Dynamically Assembled
Protocol Transformation, Integration, and eValuation En-
vironment) Communication Environment, is an object-
oriented network programming framework that imple-
ments many core patterns useful in network applications,
especially those that make use of concurrency. The
target audience of ACE includes developers of high-
performance and real-time network applications, but

ACE is generally applicable to a wide range of network-
programming problems.

Some of the components provided by ACE for reuse
in network applications are:

1) C++ wrapper facades that abstract platform-
specific operations

2) Framework components that perform a variety of
tasks, comprising:

a) Event handler dispatching
b) Signal handling
c) Service initialization
d) Inter-process communication (IPC)
e) Message routing
f) Synchronization

Although ACE can present a steep learning curve,
once it is mastered it is an unequaled tool to the network
application developer.

In this paper, the design of an efficient FTP protocol
is explored and justified. The implementation of high-
performance, concurrent client and server software using
ACE and conforming to the protocol is then presented.
ACE is used as the basis for both pieces of software,
and was used to full advantage to provide powerful
functionality and support for their features.

The FTP system described herein is based upon a
session concept. A single session as viewed by a mirror
(server) consists of a single network data connection
between the mirror and a client. On the other hand, a
session as viewed by the client consists of one or more
connections to one or more mirrors, leading to sub-file-
level concurrency that can be exploited to attain higher
transfer rates by striping a file transfer across multiple

2

connections.

II. M IRROR DISCOVERY AND SESSIONNEGOTIATION

Clients can utilize an atypical method of connecting to
mirrors available on a local network. It is possible for a
client, using multicast, to scan the network for beacons,
which are network programs that advertise the avail-
ability and properties of mirrors. These beacons, upon
receiving the client’s request for information, transmit a
response datagram to the client containing information
about the mirrors they represent. Upon receiving that
information, the client transmits a datagram to each
mirror in which it is interested requesting a number of
sessions. Each mirror will then fulfill the session request
to the best of its ability by opening TCP or UDP data
connections to the client. The protocol does not specify
whether UDP or TCP must be used, either will operate
correctly.

On the other hand, if multicast mirror beacons are not
available, or if the client knows the Internet address of a
particular mirror, it may send a session request datagram
directly to that mirror. The session negotiation will then
proceed as it normally would.

This flexible session negotiation scheme provides a
simple way of utilizing maximum possible concurrency
within a local network, as the client can automatically
detect all currently available mirrors on the local net-
work.

The event handling capabilities provided by ACE were
used to implement the multicast and datagram servers.
The servers simply register themselves as being able to
handle input events originating from either a datagram
socket or multicast channel, and instruct ACE to enter
an event loop, waiting for those events. Whenever such
an event arrives, ACE performs a callback out of the
event loop to the handler and allows it to process the
data received before reentering the event loop. ACE also
provides full support for datagram and multicast sockets.
No low-level code was created to perform I/O operations
using either type of socket. ACE abstracts socket I/O
functions to simple send/recv method calls on objects
that automatically manage the underlying connections.

III. E FFICIENT FTP PROTOCOL

Once a session has been established between a client
and mirror, a specific FTP protocol is executed to allow
remote filesystem manipulation.

This FTP protocol was designed with the objective
that it provide basic commands to users to allow them
to detect mirrors available on the network, connect with
the detected hosts or other manually selected ones,

navigate through the mirrors’ filesystem, upload new
files, download files, and delete/modify existing files. It
must support text and binary data.

To that end, operations were defined in the protocol
to:

1) detect mirrors
2) connect to mirrors
3) download file
4) disconnect from mirrors
5) change directory
6) change file permissions
7) move file
8) list files in directory
9) remove file

10) create directory
11) upload file

Remote error messages are also supported by the
protocol.

For the sake of brevity, the full message formats for
each of these commands is omitted, but the packets used
to transmit them all conform to a common format, which
is discussed here.

The first part of each packet is the header. The header
first contains the packet’s sequence number encoded as
a network byte-order 16-bit unsigned integer. The FTP
protocol is defined to operate with user-created flow
control schemes, such as sliding-window [13] protocols.
These protocols require packet sequence numbers.

The next field in the header specifies the type of the
packet, specified as an 8-bit unsigned value. Packets may
contain either data or acknowledgments for other pack-
ets. Again, acknowledgments are used in flow control
protocols.

The final field in the header specifies the length
of the packet as a 32-bit network byte-order unsigned
integer. This specifies the length in bytes of the payload
following the header.

The next portion of the packet contains the actual
payload. This is a raw binary structure with a variable
length specified in the header. Messages are segmented
as they move down the protocol stack towards physical
transmission. Each packet’s payload consists of one of
those low-level segments. The first segment from each
message contains a 32-bit command ID that is used
to differentiate different types of messages when the
message is reconstructed on the receiving end of the
protocol.

The final portion of each packet contains a 16-bit
checksum value, computed using the Internet Check-
sum [12] algorithm. This checksum is used to verify the
integrity of the packet it is associated with.

3

A few common message types are specified in the
protocol. They represent generally useful values such as
character strings and file paths. These basic messages
can be aggregated to form larger messages with greater
meaning, such as messages representing a command to
move or download a file.

An aggregate message can be visualized as a tree
structure. The parent (root) message in the tree con-
tains zero or more special attributes, often represented
as integers or other simple types, that are transmitted
directly in the parent message’s packet payload. Then,
each message that sits below the parent message in the
hierarchy is transmitted in a strictly-defined sequence.
On the receiving end of the protocol, the parent message
is received first, and as each child message is received,
it is used to reconstruct the overall message. This basic
pattern may recur arbitrarily many times in a single high-
level message.

As an example of packet aggregation, consider the
message used to transfer a file listing from a mirror to
a client. The first message transmitted simply contains a
32-bit unsigned integer specifying the numbern of files
represented in the list and identifies the message as a file
listing. Following that packet,n file information packets
are transmitted. Each file information packet contains
a number of attributes associated with the file such as
permissions and size information, encoded as integers
and converted to network byte-ordering, and is followed
by a single file path packet. Each file path packet is
followed by a string packet, with contains the actual
characters that make up the string.

From this example, it is possible to glimpse the flex-
ibility allowed by this scheme. As will be demonstrated
later, ACE makes the implementation of this scheme very
straightforward and efficient.

One final feature of these messages is that they may
be compressed before being transmitted. If a message
exceeds a certain application-defined size threshold, the
message is compressed using Zlib [11] and repackaged
before being segmented and transmitted. To indicate that
compression has occurred, a special escape sequence
is inserted in the resulting message. After being re-
constructed on the receiving end of the protocol, each
message is inspected to see if it contains the escape
sequence, and if it does it is uncompressed before being
processed further.

IV. COMMON DESIGN AND IMPLEMENTATION

Because of the regular format of the packets described
previously, it is possible to construct a common library
of classes to deal with packet formatting and I/O. ACE
provides a “Streams” framework for the express purpose

of simplifying implementation of functionality such as
this. An instance of the streams framework is actually
modeled as a pair of uni-directional streams. One stream
flows up, towards the top (high-level end) of the protocol
stack while the other stream flows down, towards the
bottom (low-level end) of the stack.

The entities that perform work in each layer of the
stack represented by the stream are known as modules.
A module consists of a pair of active objects. Each active
object contains a procedure that operates independently
of all other procedures, in its own context. It simply
processes data that is passed to it and subsequently
passes the processed data to the next object in the stack.

The unit of communication that is passed between
layers in the stack and active objects is called a message
block. A message block is any object that represents
information to be passed through the stack. In this
application, specialized message blocks were created to
represent packet headers, payloads and checksums, as
well as high-level conceptual packets. Message blocks
serve to unify the interfaces between layers, since every
layer communicates using message blocks.

Active objects actually operate by interpreting mes-
sages from a message queue. They operate in a loop and
block on a method invocation that retrieves the next mes-
sage from a dedicated message queue provided by ACE
for each individual object. Other objects communicate
with this object by asynchronously placing messages into
the queue to be interpreted by the object. This allows a
high degree of concurrency between cooperating objects,
since their communication is so loosely coupled.

This entire paradigm of passing a common data
representation through active objects that process the
data and are organized in a linear fashion is known as
the “Pipes-and-Filters” architectural pattern. “Pipes-and-
Filters” provides a very direct and convenient way of
implementing network protocol stacks.

The highest-level layer in the protocol stack is pro-
vided by the specific application using the stack. This
is because mirrors and clients interpret high-level pack-
ets differently. However, there exists some common
functionality between both pieces of software that is
concerned with handling aggregate messages. Messages
that are received are passed up to the high-level mes-
sage handler for interpretation. This handler maintains a
stack of incompletely formed messages that have been
received.

The handler invokes a virtual method on each mes-
sage received that asks if it is completely formed. The
definition of this method varies according to message
type. If the message is complete, and there is another
incomplete message on the stack, it is passed to that

4

message so that it can be aggregated into the incomplete
message. That previously incomplete message is then
queried, to discover if the new message completed it.
If it did, the entire message is popped off the stack and
passed to the application for interpretation. Otherwise,
the message remains on the stack. If, however, the
stack is empty when an incomplete message arrives,
it is placed directly onto the stack. In this fashion,
deeply recursive and complex aggregate messages can be
simply and efficiently handled independent of the type
of message.

The second layer down in the protocol stack per-
forms optional compression/decompression of high-level
packets. The compression object inspects each packet
passed to it and decides whether it is large enough to
require compression. If it is, the compression object
creates a new message block large enough to hold the
compressed message and initializes it with the special
escape sequence that notifies the receiving decompressor
that the message is compressed, and also includes the
original size of the packet. The compression object then
compresses the entire old packet into the new message
block and sends it down the rest of the stream. If the
packet is not large enough to warrant compression, it is
propagated down the stream unmodified.

The decompression object on the receiving protocol
stack inspects each message passed up through it, search-
ing for the compression escape sequence. If the sequence
is located, the decompression object inspects the size
field contained after the sequence and creates a new
message block large enough for the resultant packet. The
decompression object then decompresses the compressed
packet into the new message block. The final resultant
packet is then propagated up the stack to the application-
defined packet interpretation layer.

The third layer down the stack is responsible for seg-
menting/aggregating packets. The segmentation object
inspects a packet passing down through it, and if its
size exceeds the limitations of the underlying transport
medium, it breaks the packet into smaller packets that
can be reassembled on the receiving end of the pro-
tocol. The aggregation object is simply responsible for
reversing this process before transmitting packets up the
protocol stack.

The second layer from the bottom of the stack per-
forms flow control on packet traffic. It implements one
of a variety of flow control algorithms and basically
regulates how quickly packets are transmitted on the
transmitting side of the protocol, and how packets are
received and re-sequenced if they arrive out-of-order on
the receiving end of the protocol. The transmitting object
is also responsible for dealing with acks received from

the receiving end of the protocol. Typically, if an ack
is not received within a certain time period, the packet
served by that ack is resent.

The lowest layer in the protocol stack deals with
actually transmitting and receiving packet segments to
and from the underlying network transport medium. The
transmitting object transmits the segment header, payload
and checksum in sequence, data which is then received
by the remote receiving object, again in sequence. The
receiving object bears the additional responsibility of
generating acks for uncorrupted packets received and
transmitting those acks to the sender. The sending ob-
ject decomposes segments into their components, while
the receiving object reconstructs a segment from those
individual components.

The most important features to notice about this
entire system are that the system is easy to analyze
and design in components, since the working of each
layer is separated from the working of any other layer,
and that using individual layers facilitates component
interchangeability.

For example, a number of flow control strategies are
supported by the stack. Upon session establishment, the
mirror sends a configuration message to the client indi-
cating which flow control algorithm is in use. The client
uses this information to configure its own protocol stack
to be compatible with the mirror’s. Furthermore, since
each connection between a client and mirror contains
its own protocol stack, a client may simultaneously
use a variety of flow control mechanisms on different
connections within a single client session.

Another example of the modularity and flexibility of
this system is the simple fact that it is almost completely
reusable between client and mirror software. The only
component that changes between them is the highest-
level interpretation layer. This is in striking contrast to
many other procedural network applications that have
completely separate codebases for client and server soft-
ware.

Layering the protocol stack in this manner also pro-
vides a great deal of concurrency. Each object in each
layer operates in its own thread (lightweight process) and
communicates with surrounding layers only indirectly
through message queues. This provides high application
performance and scalability, especially when the appli-
cation is executed on a multi-processor system.

Finally, the abstract data representation afforded by
message blocks promotes data-agnosticism throughout
the stack. It was pointed out, for example, that com-
pressed and decompressed packets are treated equiva-
lently by all low-level stack components, and are only
dealt with specifically by the compression layer. It is

5

conceivable and likely that encryption of data packets
would also be desirable in many domains. It would be
a trivial task to insert an encryption layer somewhere
within the stack, and could be done without affecting
any other layer.

Once again, not a single line of low-level sockets
programming or synchronization code was written in the
entire system. ACE proved to be totally sufficient for
implementing the entire system and practically forced a
modular, object-oriented and pattern-oriented design on
the system.

V. CLIENT DESIGN AND IMPLEMENTATION

The client software that lays on top of this stack
operates by interactively interpreting user commands and
executing them using the sessions established between it
and any number of mirrors.

The front end of the software was implemented using
the standard GNU [8] tools Flex [14], Bison [15] and
Readline [16] to create a simple, familiar command line.
Common commands such asbye , mv, cd , mkdir ,
chmod, ls , put , get , rm andconn (similar to open)
were provided, making this a fairly full-featured FTP
implementation.

Upon receipt of a command, the client software gen-
erates messages corresponding to the command to be
executed, and pushes these messages into the protocol
stack, which then autonomously processes the messages
and ensures their delivery. Their is a clear separation
between command formulation and command delivery.

Responses to the messages are likewise delivered up
through the protocol stack from the mirrors and may
be interpreted and displayed to the user if appropriate.
An error message is one such message that would be
displayed to the user.

On the other hand, many messages have significance
only for the client software. For example, to initiate
a file download the client software sends a download
request message to a mirror, that responds with detailed
information about the file. The client software receives
this message and uses the information contained within it
to generate a number of messages to send to each mirror,
instructing them to begin sending file data. In response,
each mirror sends the proper chunks of the file to the
client software, which proceeds to store it in a local file.

Multi-streaming striped downloads are enabled by
the high-degree of application modularity encouraged
by ACE’s architecture. Being able to encapsulate an
entire protocol stack within an ACE stream that man-
ages communication between a single mirror and the
client makes it simple to divide work between different
communication links.

VI. SERVER DESIGN AND IMPLEMENTATION

The server software differs from the client software
mainly in that it operates non-interactively, providing
no facility for directly accepting commands from a
user. Instead, it interprets commands received though the
network from remote clients.

VII. PERFORMANCERESULTS

One of the claimed advantages of the ACE framework
is its high-performance. The reasons for this are obvious,
since it enables such a high degree of concurrency and
promotes quality application designs. Despite the fact
that the network available for testing the application
was heavily degraded due to poor configuration and
overloaded network devices, the performance results
were encouraging. The advantages offered by striped
file transfers and the cross-platform flexibility inherent
in the application are made apparent by these results:

Multi-streaming Configuration Using Selective Repeat
Flow Control:
1 connection from x86 cluster to x86 multiprocessor
1 connection from x86 cluster to dual G4 Macintosh
Adaptive acknowledgment timeout
Window size: 100
8192 byte packets
120MB file

Results:
Throughput from x86 multiprocessor: 588551B/s
(575KB/s)
Throughput from G4 Macintosh: 354490B/s (346KB/s)
Throughput total: 920.938kB/s

VIII. C ONCLUSION

In this paper, an efficient binary FTP protocol was pre-
sented and discussed. The object-oriented ACE frame-
work was also presented as a tool that can be quickly and
easily used to write portable, flexible and maintainable
network applications that make use of well-established
network programming patterns and paradigms. Finally,
performance results for one implementation of the FTP
protocol using ACE were presented and analyzed.

REFERENCES

[1] Carnegie Mellon S.E.I., “Object-Oriented Analysis”,
http://www.sei.cmu.edu/str/descriptions/ooanalysis.html

[2] Schmidt, Douglas C.; “Design Patterns, Pattern Languages, and
Frameworks”, http://www.cs.wustl.edu/ schmidt/patterns.html

[3] Schmidt, Douglas C.; “The ADAPTIVE Communication Envi-
ronment”, http://www.cs.wustl.edu/ schmidt/ACE.html

6

[4] Schmidt, Douglas C.; Stal, Michael; Rohnert, Hans;
Buschmann, Frank; “Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects”, 2000

[5] Syyid, Umar; “A Tutorial Introduction to the ADAPTIVE
Communication Environment (ACE)”

[6] Schmidt, Douglas C.; “The ADAPTIVE Communication En-
vironment, An Object-Oriented Network Programming Toolkit
for Developing Communication Software”, June 14-17, 1993

[7] Schmidt, Douglas C.; “An OO Encapsulation of Lightweight
OS Concurrency Mechanisms in the ACE Toolkit”

[8] “Philisophy of the GNU Project”,
http://www.gnu.org/philosophy/philosophy.html

[9] Postel, J.; Reynolds, J.; “FILE TRANSFER PROTOCOL
(FTP)” http://www.ietf.org/rfc/rfc0959.txt, Oct 1985

[10] “BSD Sockets”, http://www.ecst.csuchico.edu/ chafey/prog/sockets/sinfo1.html
[11] “Zlib Compression Library”, http://www.gzip.org/zlib/
[12] Braden, R.; Borman, D.; Partridge, C.; “RFC 1071 – Computing

the Internet Checksum”, http://www.faqs.org/rfcs/rfc1071.html
[13] “Sliding Window Protocols”,

http://www.freesoft.org/CIE/Course/Section4/5.htm
[14] “GNU Flex”, http://www.gnu.org/software/flex/
[15] “GNU Bison”, http://www.gnu.org/software/bison/
[16] “The GNU Readline Library”,

http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html

	I Introduction
	II Mirror Discovery and Session Negotiation
	III Efficient FTP Protocol
	IV Common Design and Implementation
	V Client Design and Implementation
	VI Server Design and Implementation
	VII Performance Results
	VIII Conclusion
	References

